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Abstract
The European Space Agency (ESA) uses an engine to perform tests in the Ground Segment
infrastructure, specially the Operational Simulator. This engine uses many different tools to
ensure the development of regression testing infrastructure and these tests perform black-box
testing to the C++ simulator implementation. VST (VisionSpace Technologies) is one of the
companies that provides these services to ESA and they need a tool to infer automatically tests
from the existing C++ code, instead of writing manually scripts to perform tests. With this
motivation in mind, this paper explores automatic testing approaches and tools in order to
propose a system that satisfies VST needs.
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1 Introduction

Since ever, every industry use testing methods to discover problems in early stages of the
development process to improve the products quality, and software industry is not an ex-
ception. Miller [22] describe the utility of software testing as:

The general aim of testing is to affirm the quality of software systems by system-
atically exercising the software in carefully controlled circumstances.

In the most recent period of software history the integration of software testing as an
important step in the process of software development opened up to the origin of xUnit [7]
tools and Agile software development. Also, ESA started to use manual written tests as a
part of their software development processes.

Using manual written tests is tedious, time consuming and error-prone. Lots of func-
tions/methods need full code coverage and this practice leads to incomplete test suites; as it
is hard to create tests that cover specific code paths, many hidden bugs can be left. Many
times a supervision leaded by the developer is needed to assure that the right paths in the
code are being tested, specially regarding black-box testing.

Nowadays we start to observe a rapid increase in the automatic test generation field.
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186 Automatic Test Generation for Space

1.1 Goals
This document correspond to the first milestone in the author’s dissertation (developed under
a partnership agreement between UM and VST) aimed at producing a tool that is able to
automatically generate interesting testcases for the C++ ESA’s Operational Simulator.

This document reviews the most studied techniques and the tools that implement them
in order to choose the best set of suitable techniques to incorporate in an automatic testing
generator to the Ground Segment infrastructure, specially the Operational Simulator at
ESA.

Two different techniques emerge for different purposes, Structural Techniques and Func-
tional Techniques, known respectively as White-box [8] testing and Black-box [9] testing.
Functional testing is the most common at ESA, because of the calculation complexity behind
the Operational Simulators.

A brief discussion will be presented regarding White-box testing vs. Black-box testing
and then some automatic generation techniques will be discussed in more detail. Further-
more the potential of the described tools will be explained, and how they can help on solving
the problem VST has nowadays. First of all an explanation about the Operational Simulator
Infrastructure will be provided.

1.2 Operational Simulator Infrastructure
ESA’s Operational Simulator called Simulation Infrastructure for the Modeling of SATellites
(SIMSAT) is a satellite simulator that model and simulate the behavior of satellites in order
to allow operators1 train more effectively and help them to define the satellites’ operational
processes.

The simulator consists of operational models of the various internal components of the
satellite from their main computer to its payload (instruments aboard the satellite), which
interact with each other and thus define the behavior of the satellite. VST has participated
in the development of tests to validate the operational simulator. The development of these
simulators is based on operating rules simulation of ESA – Simulation Model Portability
(SMP)2, as well as in infrastructure SIMSAT simulation. This standard is infrastructure
agnostic of any space specific model, so any other needs of simulation can be used, such as
defense, transport, energy, etc. Here is a brief description of each component in SIMSAT:3
SIMSAT Kernel this is a generic simulation infrastructure providing the framework for the

running of space systems simulators.
SIMSAT Man-Machine Interface (MMI) this is a generic Graphical User Interface en-

abling the user interaction with the simulator’s components.
Ground Models this is a family of SIMSAT compatible models enabling a realistic simula-

tions of all ground systems between the spacecraft (or spacecraft model) and the control
centre at European Space Operations Centre (ESOC).

1 Operators are responsible for the operation of the satellite after its launch.
2 SMP is based on the ideas of component-based design and Model Driven Architecture (MDA) as pro-
moted by the Object Management Group (OMG) and is based on the open standards of UML and
XML. One of the basic principles is the separation of the platform specific and platform independent
aspects of the simulation model. This protects the investments in the model from changes in techno-
logy by defining the model in a platform independent way, which can then be mapped into different
technologies. Further the SMP specification provides standardised interfaces between the simulation
models and the simulation run-time environment for common simulation services as well as a number
of mechanisms to support inter-model communication. [1, 2, 3, 4, 5]

3 Information in: http://www.egos.esa.int/portal/egos-web/products/Simulators/simsat/intro-sim.html
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Emulator Suite On-board Processor Emulators support the execution in satellite simulators
of the real flight software.

Generic Models a set of generic space models that ease the developments of the spacecraft
models used in operational simulators.

Ground Systems Test and Validation Applications (GSTV) this is a family of test simu-
lators that are based on the generic simulators infrastructure components listed above
and are able to support the different levels of testing of ground infrastructure systems.

Moreover the SIMSAT Kernel is made up of several components:4

Scheduler is responsible for the co-ordination and processing of all events within the Simu-
lation Kernel. An event on the schedule identifies an action that needs to be performed
at a specified point in simulated time.

Mode Manager is the simulation state machine. The Simulation has a number of opera-
tional modes, which control the operation of the simulation.

Time-Manager is responsible for maintaining and providing models and the MMI with the
correct simulation-Time. It provides time in four formats, Simulation-Time, Epoch-
Time, Zulu-Time and Correlated Zulu-Time. this is a family of SIMSAT compatible
models enabling a realistic simulations

Logger supports the recording of Kernel or model events that occur during a simulation.
The log in which the current simulation messages are written is called the active log.
The logger also provides a view of the simulation event history in an MMI during a
simulation session.

Visualization manager is responsible for making the values of both model and Kernel data
items available for display in an MMI.

State-vector manager is responsible for the saving and restoring of the state of the simu-
lation. Its main purpose is to allow the Simulation State, at any point in the simulation,
to be saved. This allows the user to return to an earlier simulation scenario.

Command handler is responsible for the reception and execution of Kernel and user defined
commands.a set of generic space models that ease the developments of the spacecraft
models used in operational.

Command procedure interpreter is responsible for the interpretation of command proced-
ures. A command procedure contains Kernel and User defined simulator commands and
supports a procedural language to control the flow of these commands. The execution
of command procedures is controlled directly from the MMI.

Right now, to be able to perform tests in the Operational Simulator, in order to valid-
ate SIMSAT, VST Engineers need to write scripts that perform simulations and validate
the results using GUI interfaces (SIMSAT MMI). This job can be tedious and difficult to
replicate.

So a first solution will have to go through a preliminary study of the tools that currently
exist with which we can generate tests automatically. By studding these tools we do not
hope to find the perfect solution, but combine techniques to obtain an optimal solution to
improve VST work.

4 More information in: http://www.egos.esa.int/portal/egos-web/products/Simulators/SIMSAT/
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1.3 White-box vs Black-box testing
In this subsection is discussed the two most common approaches for testing: White-box and
Black-box testing.

In White-box testing the tester needs to understand the internals of the code to be able
to write tests for it. The goal of selecting test cases that test specific parts of the code is to
cause the execution of specific spots in the software, such as statements, branches or paths.
This technique consists in analyzing statically a program, by reading the program code and
using symbolic execution techniques to simulate abstract program executions in order to
attempt to compute inputs to drive the program along specific execution paths or branches,
without ever executing the program. Control Flow based testing approach can be useful to
analyze all the possible paths in the code and write unit tests to cover multiple paths. The
CFG (Control Flow Graph) of the program can be built, test inputs can be generated to
make any path execute regarding a given criterion: Select all paths; Select paths to achieve
complete statement coverage [8, 24]; Select paths to achieve complete branch coverage [28, 8];
or Select paths to achieve predicate coverage [8, 24].

Data Flow Testing is designed into looking at the life cycle (creation, usage and destruc-
tion) of a particular piece of data and observe how it is used along the CFG, this ensures
that the number of paths is always finite [27].

Opposite to White-box testing, Black-box testing is based on functionality, so the tester
observes a system based on its functional contracts and writes the pairs of inputs and
the expected outputs. This approach is used for unit testing of single methods/functions,
integration testing of combinations of the methods/functions, or even final system testing.

This document is organized as follows. In section 2 the important testing approaches in
use—Specification-based testing and Constraint-based generation—are briefly revisited and,
for each one, the most relevant tools are identified. In section 3 some of the tools referred
are experimented in order to be compared. Our proposal for a test generation system is
introduced in section 4. The document is concluded in section 5.

2 Testing Tools Approaches

In this section, a study of the most recent tools that use Specification-based, Constraint-
based, Grammar-based and Random-based tests generation approaches for the most popular
languages - C, JAVA and C# will be presented.

2.1 Specification-based Generation Testing
Specification Based Testing refers to the process of testing a program based on what its
specification or model says its behavior should be. In particular, can be generated test cases
based on the specification of the program’s behavior, without seeing an implementation of
the program. So this clearly a way of Black-box testing.

With this technique the testing phase and development phase can be started in parallel,
we do not need the implementation to start the development of test cases. The only thing
needed is the functional contracts and/or oracles5 for each function/method.

Since the 90’s there have been some effort into using specifications to try to generate
test cases such as Z specifications [19, 30], UML statecharts [25],VDM [6] or ADL specific-
ations [29]. These specifications typically do not consider structurally complex inputs and

5 A test oracle determines whether or not the results of a test execution are correct [26].
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these tools do not generate JUnit test cases. Nowadays there are some tools out there that
can perform Specification-based Testing approach:

Conformiq is a commercial Tool Suite that generates human-readable test plans and ex-
ecutable test scripts from Java code, state charts and UML6.

MaTeLo stands for Markov Test Logic and is a commercial tool that generates test sequences
from a collection of states, transitions, classes of equivalence, types, sequences, global
variables and test oracles using their user interface7.

Smartesting CertifyIt is a commercial tool that generates test cases from a functional
model, as UML8.

T-Vec is a commercial tool that generates test cases from modeling tools available from
T-VEC or third-party vendors9.

Rational Tau is an IBM commercial tool that provides automated error checking, rules-
based model checking, and a model-based explorer using UML10.

The relevant ones or the recent open-source ones will be discussed.

2.1.1 Spec Explorer

This is a Microsoft model-based testing that uses one software modeling languages, the AsmL
(Abstract State Machine Language). This modeling language provides the foundations of
the Spec Explorer11 tool and Spec# that is a formal language for API contracts (influenced
by JML, AsmL, and Eiffel), which extends C# with constructs for non-null types, pre-
conditions, post-conditions, and object invariants12. These tool is already available to users
and is in a very mature phase.

The user of Spec Explorer writes a model of the system and sets the possible values for
some properties in his code, furthermore the user also provides a scenario. These scenarios
are simple sets of calls to methods without their parameters (remember that this is Spec
Explorer job). Then Spec Explorer will generate a visual graph where each node represents
a state of the system and the arrows represent a call to some method. It searches throw
all possible sequences of methods invocation that do not violate the contracts (pre, pos
conditions) and that are relevant to a user-specified set of test properties. After that we can
generate from this visual graphs the unit tests (the arrows) and the test cases (a graph).

2.1.2 JMLUnit

JMLUnit [15] is a tool that automates the generation of oracles for JAVA testing classes.
This tool monitors the specified behavior of the method being tested to decide whether
the test passed or failed. This monitoring is done using the formal specification language
runtime assertion checker. The main idea behind these tools is to translate the pre- and
post-conditions methods into the code of the testing method.

6 See more at: http://www.conformiq.com/products.php
7 See more at: http://www.all4tec.net/index.php/All4tec/matelo-product.html
8 See more at: http://www.smartesting.com/index.php/cms/en/product/certify-it
9 See more at: http://www.t-vec.com/
10 See more at: http://www-01.ibm.com/software/awdtools/tau/
11 See more at: http://research.microsoft.com/en-us/projects/specexplorer/
12 See more at: http://research.microsoft.com/en-us/projects/specsharp/
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The pre-conditions became the criteria for selecting test inputs, and the post-conditions
provided the properties to check for test results. So, the post-conditions became the test
oracles.

This tool uses the JML [12] specification language to annotate JAVA methods code with
pre- and post-conditions and automatically generate JUnit test classes from JML specifica-
tions.

2.1.3 TestEra
TestEra [21] can be used to perform automated specification-based testing of JAVA pro-
grams. This framework requires as input a JAVA method, a formal specification13 of the
pre and post-conditions of that method, and a bound that limits the size of the test cases
to be generated.

With the pre-condition it automatically generates all non-isomorphic test inputs up to
the given bound. It executes the method on each test input, and uses the method post-
condition as an oracle to check the correctness of each output. This tool uses Alloy’s14 SAT
system to analyze first-order formulae. The authors claim that have used TestEra to check
several JAVA programs including an architecture for dynamic networks, the Alloy-alpha
analyzer, a fault-tree analyzer, and methods from the JAVA Collection Framework.

2.1.4 Korat
Korat [11] is a mature framework for automated testing structurally complex inputs of JAVA
programs. Given a formal specification for a method, Korat15 uses the method pre-condition
to automatically generate all (non-isomorphic) test cases up to a given small size. Korat
then executes the method on each test case, and uses the method post-condition as a test
oracle to check the correctness of each output.

To be able to generate test cases for a method, Korat uses a predicate and a bound on
the size of its inputs, Korat generates all (non-isomorphic) inputs for which the predicate
returns true. Korat generates all the possible input spaces regarding the predicate and
monitor the predicate’s executions to be able to prune large portions of the search space.

The writing of a predicate is done using JAVA language and in most cases can be written
the first thing that cames to programmer’s head to restrict the input space. But for more
complex structures it is better to understand how the matching algorithm work to be able
to write a fast verifiable predicate.

Unfortunately the test derivation tool using Korat (that also uses JML) is not available
to the public.

2.2 Constraint-based Generation Testing
Constraint Based Testing [18] can be used to select test cases satisfying specific constraints by
solving a set of constraints over a set of variables. The system is described using constraints
and these can be solved by SAT solvers.

13 Specifications are first-order logic formulae.
14Alloy is a first-order declarative language based on sets and relations. The Alloy Analyzer is a fully
automatic tool that finds instances of Alloy specifications: an instance assigns values to the sets and
relations in the specification such that all formulae in the specification evaluate to true.

15 See more at: http://korat.sourceforge.net/

http://korat.sourceforge.net/
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Constraint programming can be combined with symbolic execution, regarding this ap-
proach a program is executed symbolically, collecting data constraints over different paths
in the CFG, and then solving the constraints and producing test cases from there. There
are some tools out there, like:

Euclide for verifying safety properties over C code using ACSL annotations, CPBPV for
program verification.

OSMOSE a tool that uses concolic execution and path-based techniques over machine code.
GATeL for Lustre language to generate test sequences16.

Here two tools will be explained, one proprietary and other academic.

2.2.1 Pex
Pex [32] is an automatic white-box test generation tool for .NET. Starting from a method
that takes parameters, Pex performs path-bounded model-checking by repeatedly executing
the program and solving constraint systems to obtain inputs that will steer the program
along different execution paths. This uses the idea of dynamic symbolic execution [33].
Pex uses the theorem prover and constraint solver Z317 to reason about the feasibility of
execution paths, and to obtain ground models for constraint systems.

Pex came with Moles that helps to generate unit tests. These tools together are able to
understand the input (by analyzing branches in the code: declarations, all exceptions throws
operations, if statements, asserts and .net Contracts). With this information Pex uses Z3
constraint solver to produce new test inputs which exercise diferent program behavior.

The result is an automatically generated small test suite which often achieves high code
coverage.

Pex can be used in a project, class or method (which makes it a very helpful and versatile
tool). After the analysis process the "Pex Explorarion Results" shows the input × output

pairs selected for each test case for the method, here it also shows the percentage of the test
coverage.

2.2.2 PathCrawler
This is an academic tool based on dynamic and static analysis [34], it uses constraint logic
programming to generate the Test-cases. PathCrawler18 executes an instrumented function
for each function under test with the generated inputs, it preserves this information to not
cover the same path.

This tool supports assertions in any point in the code and pre-conditions regarding the
input values.

2.3 Grammar-based Generation Testing
In this approach inputs to a system under test are defined by a context-free grammar. The
language of the grammar contains all possible test cases. Using this approach to describe
the syntax of the input to the system under test proves to be very helpful to test network
protocols [31, 20] and parsers and compilers [13, 14].

16 See more at: http://www-list.cea.fr/labos/gb/LSL/test/gatel/index.html
17 See more at: http://research.microsoft.com/en-us/um/redmond/projects/z3/
18 See more at: http://www-list.cea.fr/labos/gb/LSL/test/pathcrawler/index.html
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2.3.1 ASTGen
ASTGen [17] is a JAVA framework that automates testing of refactoring engines: generation
of test inputs and checking of test outputs. The main technique is an iterative generation of
structurally complex test inputs. ASTGen19 allows developers to write imperative generators
whose executions produce input programs for refactoring engines. More precisely, ASTGen
offers a library of generic, reusable, and composable generators that produce abstract syntax
trees (ASTs).

So, ASTGen ensures the production of test inputs instead of the developer produce them.
The developer needs to write a generator whose execution produces thousands of programs
with structural properties that are relevant for the specific refactoring being tested. This
tool has found 21 bugs in Eclipse and 26 bugs in Netbeans applications.

2.4 Random-based Generation Testing
In the random testing approach, test inputs are selected randomly from the input domain
of the system. To have a random testing suite first we must identify the input domain,
after that select test inputs independently from the domain, then the system under test is
executed on these inputs, the results are compared to the system specification, an oracle.

Random testing gives us an advantage of easily estimating software reliability from test
outcomes. Test inputs are randomly generated according to an operational profile, and
failure times are recorded. The data obtained from random testing can then be used to find
bugs or non expected behaviors.

The main problem regarding random generation is the problem of the coverage, it is
possible that it will not be broad enough. And furthermore it can be too sparse to actually
test specifics parts of the program. Either way, this technique proves to be very effective for
testing compilers.

2.4.1 Csmith
Csmith [36] is a black-box random tests generator that is able to generate C programs
conform to the C9920 standard. This is a very recent tool that already discover more than
195 bugs in LLVM and 79 bugs in GCC. With Csmith we are able to generate random
programs with unambiguous meanings (undefined behavior or unspecified behavior). Does
not attempt to generate terminating program, so they use timeouts for long time consuming
generated programs. And the main supported features right now are: Arithmetic, logical,
and bit operations on integers, Loops, Conditionals, Function calls, Const and volatile,
Structs and Bitfields, Pointers and arrays, Goto, Break and continue. The generation of
code regarding this features can be tuned using the command line program.

2.4.2 QuickCheck for JAVA
QuickCheck was originally a combinator library for the Haskell21 programming language [16].
Later on QuickCheck philosophy spread to other programming languages like: JAVA, Erlang,
Perl, Ruby and JavaScript.

19 See more at: http://mir.cs.illinois.edu/astgen/
20 See more at: http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
21 See more at haskell.org

http://mir.cs.illinois.edu/astgen/
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
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QuickCheck works by generating high amounts of data (within the method domain) and
checking it against a given property, it is expected to create a wide range of the input
domain, thus increasing the chances of giving more test coverage.

3 Using the Tools

After introducing the theory and the techniques that support each tool, some of the tools
will be demonstrated in action, resorting to small but illustrative examples on how each tool
can help us to find good test cases.

3.1 PathCrawler
Concerning the first case a simple example will be used based on a function that performs
a multiplication (see listing 1), creating a simple branch on the code.

Listing 1 2D point struxture and multiplication function.
typedef struct s {

int x;
int y;

}Point;

int Multiply (Point p) {
if(p.x * p.y == 42) return 1;
else return 0;

}

Pointers were tried instead of coping the structure as a parameter to Multiply function,
but PathCrawler was not able to run.

Nevertheless, PathCrawler was able to give a full coverage for this simple function as
you can see in Table 1.

Table 1 Output Table for Multiply function using PathCrawler.

Result p return value

X Point{x=1,y=42} 1

X Point{x=177407,y=109471} 0

Regarding our second example a function that performs a binary search (listing 2) in
order to find if a number is in a given range (between two bounds).

A function that PathCrawler gives to us has been used: pathcrawler_assert, this func-
tion can be used at any location in the program under test, and will force PathCrawler to
generate test cases to cover both the case where its argument is true and the case where it
is false. This feature may be seen as another way to write an oracle.

The results were interesting: 31 covered paths and 44 infeasible paths and the test was
interrupted by PathCrawler, because PathCrawler reach the maximal test session time (the
user can increase this number, but for this example is left the default value).

A further analysis of the results demonstrated that 28 out of the 44 infeasible paths
discovered appeared when PathCrawler tried to do the assertion in line 8. No pre-condition

SLATE’12
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Listing 2 Binary search.
int BSearch (int x, int n) {

return BinarySearch (x, 0, n);
}

int BinarySearch (int x, int lo , int hi) {
while (lo < hi) {

int mid = (lo+hi )/2;
pathcrawler_assert (mid >= lo && mid < hi);
if (x < mid) { hi = mid; }

else { lo = mid +1; }
}
return lo;

}

was written, so PathCrawler does not know that this is a pre-condition for BinarySearch

function: lo ≤ x < hi. In Table 2 is shown some of the test inputs generated for this
example.

Table 2 Output Table for BSearch function using PathCrawler.

Result x n return value

X -189424 -140714 0

X 157819 0 0

X 1 1610612736 2

X 2 805306368 3

X 11 1610612736 12

PathCrawler was tried with the function on listing 3, that calculates the year of the nth

day after 1980-01-01.
The result was unexpectedly unknown. PathCrawler was unable to trace even one path

in our code, the number of k-path’s could be increased but with no success for this example.

3.2 Pex

Regarding Pex, we used the same examples shown previously adapted to C# language.
Because C# is a more expressive language than C our examples will be improved with some
other OO and C# specific features like Exceptions and Debug.Assert calls. In fact Pex can
also support a lot more features that are present in C# language like .NET Contracts and
many more.

Listing 4 is the simple implementation of a 2D Point class that has been created to have
special behavior, under a certain condition x× y ≡ 42 it is supposed to throw an exception.

So, as was described earlier, Pex will try to generate such input as it is possible (in a
given amount of time) to traverse all the paths inside the code. The output table can be
seen in Table 3, with the inputs and outputs that Pex found to ensure a full coverage of the
code.
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Listing 3 Calculate year for nth day after 1980-01-01.
int IsLeapYear (int year) {

return (year % 4 == 0) && (( year % 100 != 0) || (year % 400 == 0));
}
int FromDayToYear (int day) {

int year = 1980;

while (day > 365) {
if ( IsLeapYear (year )) {

if (day > 366) {
day -= 366;
year += 1;

}
} else {

day -= 365;
year += 1;

}
}
return year;

}

Listing 4 2D point class and multiplication method that throws an exception.
public class Point {

public readonly int X, Y;
public Point(int x, int y) { X = x; Y = y; }

}

public class Multiply {
public static void multiply (Point p) {

if (p.X * p.Y == 42)
throw new Exception (" hidden bug !");

}
}

Table 3 Output Table for multiply method using Pex.

Result p Output/Exception Error Message

Object ref. not set

7 null NullReferenceException to an instance

of an object.

X new Point{X=0,Y=0}

7 new Point{X=3,Y=14} Exception hidden bug!

Pex was successful to reach the Exception path inside the code. Of course this is not
always possible, since sometimes the functions inside the if statement does not have inverse
function.

Pex can also be very helpful checking assertions and contracts in .net code. A binary

SLATE’12
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Listing 5 Binary search with debug assertion.
public class Program {

public static int BSearch (int x, int n) {
return BinarySearch (x, 0, n);

}
static int BinarySearch (int x, int lo , int hi) {

while (lo < hi) {
int mid = (lo+hi )/2;
Debug. Assert (mid >= lo && mid < hi);
if (x < mid) { hi = mid; } else { lo = mid +1; }

}
return lo;

}
}

search algorithm was written and an assertion was also written in the middle of our code.
Pex was able to generate an input that could not pass in the assertion inerted in our code,
as can be seen in Table 4.

Table 4 Output Table for BSearch method using Pex.

Result x n result Output/Exception

X 0 0 0

X 0 1 1

X 0 3 1

7 1073741888 1719676992 TraceAssertionException

X 1 6 2

X 50 96 51

Now we have a more complex example, a function that returns the year of the nth day
after 1980-01-01. Pex was able to generate some important test cases, but it has reached
the limit amount of time to calculate interesting paths in the code, this boundary prevents
Pex from getting stuck when the program goes into an infinite loop.

Pex was unable to discover the year for day 366 and 7671 as we can see in Table 5. This
problem occurred because Pex by default has a maximum number of conditions, this avoids
never ending functions and still has a result from Pex. In this particular case we could
increment the number of MaxConditions: [PexMethod(MaxConditions = 10000)].

3.3 Korat
Like was explained before, Korat generates a graphical representation of the structure in-
stances that validates the property repOK. This property was written using JAVA code.

In order to test the freelly available version of Korat, a Doubly Linked List structure was
created in JAVA.

Now the repOK predicate method must be defined. This predicate method will check
that the tree doesn’t have any cycles and that the number of nodes traversed from root
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Listing 6 Calculate year for nth day after 1980-01-01 (Java).
public class Program {

private static bool IsLeapYear(int year) {
return (year % 4 == 0) && ((year % 100 != 0) || (year % 400 == 0));

}
public static void FromDayToYear(int day , out int year) {

year = 1980;
while (day > 365) {

if (IsLeapYear(year)) {
if (day > 366) {

day -= 366;
year += 1;

}
} else {

day -= 365;
year += 1;

}
}

}
}

Table 5 Output Table for F romDayT oY ear method using Pex.

Result day out year Output/Exception

X 0 1980

X 367 1981

4! 366 path bounds exceeded

X 1023 1982

X 2561 1987

X 7874 2001

4! 7671 path bounds exceeded

matches the value of the field size. First was defined the properties about this data structure.
The most relevant ones are property 5 in Figure 1 that ensures the structure and property 6
that ensures our doubly linked list does not have repeated elements.
Consider e, e1, e2 ∈ LinkedListElement and i the index function: i : LinkedListElement→
int, that receives an element of LinkedList and returns the position of that element in the
structure. Consider also three new functions:
1. Head(l) being l of type LinkedList and meaning in Java code l.Head.
2. Tail(l) being l of type LinkedList and meaning in Java code l.Tail.
3. size(l) being l of type LinkedList and meaning in Java code l.size.

As a matter of avoiding verbosity two symbols were defined (∈∈ and ⊆⊆, these symbols
are used to define the LinkedList invariants in Figure 1):
1. a ∈∈ l being a of type LinkedListElement and meaning that a is an element of the

LinkedList l.
2. {a, . . . , z} ⊆⊆ l meaning a ∈∈ l ∧ . . . ∧ z ∈∈ l.
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Listing 7 Linked list implementation.
public class LinkedList <T> {

public static class LinkedListElement <T> {
public T Data;
public LinkedListElement <T> Prev;
public LinkedListElement <T> Next;

}
private LinkedListElement <T> Head;
private LinkedListElement <T> Tail;
private int size;

}

We took the properties described in Figure 1 and use them to restrict the generation
of structures as we can see in the following Java implementation code. Note that we using
short-circuiting, so we return false as soon as we can. This way Korat will be able to
generate faster the instances matching our criteria.

The last step was defining the finitization method, this way we tell Korat how to bound
the input space.

The properties in Figure 1 were taken and used to restrict the generation of structures
using Java. So the repOK method that receives a LinkedList structure and returns Bool

whenever this structure follows the invariants in 1 was defined. Using this specification
Korat generated the 2 structures shown in Figure 2. In Figure 2a with 2 elements and in
Figure 2b an instance with 5 elements.

3.4 Summary

After the experimental study of the selected tools, reported in the previous subsections, it
was found that PathCrawler and Pex have different approaches regarding testcase genera-
tion. PathCrawler seems to be a very efficient tool to discover multiple infeasible paths in C
code, because it uses a mix between static and dynamic analysis. When it finds a suitable in-
put for a function it tries to execute collecting all the executed paths in the code. Pex on the
other side just uses static execution and it is very efficient discovering all the feasible paths
in C# methods. Pex was also used to perform testcase generation in C# classes, but the
generated instances are too simple to perform more interesting tests. The LinkedList class

〈∀ l : l ∈ LinkedList : Head(l) ≡ null ∨ Tail(l) ≡ null⇔ size(l) ≡ 0 〉 (1)
〈∀ l : l ∈ LinkedList : Tail(l).Next ≡ null 〉 (2)
〈∀ l : l ∈ LinkedList : Head(l).P rev ≡ null 〉 (3)

〈∀ l : l ∈ LinkedList : size(l) ≡ 1⇔ Head(l) ≡ Tail(l) 〉 (4)
〈∀ l : l ∈ LinkedList : 〈∀ e1, e2 : {e1, e2} ⊆⊆ l :
〈∃ e : e ∈∈ l : e1.Next ≡ e ∧ e2.P rev ≡ e 〉 〉 〉 (5)

〈∀ l : l ∈ LinkedList : 〈∀ e1, e2 : {e1, e2} ⊆⊆ l : e1 ≡ e2 ⇒ i(e1) ≡ i(e2) 〉 〉 (6)

Figure 1 Invariants for class LinkedList.
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Listing 8 Structures generation.
public boolean repOK () {

if(Head == null || Tail == null)
return size == 0;

if(size == 1) return Head == Tail;
if(Head.Prev != null) return false;
if(Tail.Next != null) return false;
LinkedListElement <T> last = Head;
Set visited = new HashSet ();
LinkedList workList = new LinkedList ();
visited .add(Head );
workList .add(Head );
while (! workList . isEmpty ()) {

LinkedListElement <T> current =
( LinkedListElement <T>) workList . removeFirst ();

if ( current .Next != null) {
if (! visited .add( current .Next ))

return false;
workList .add( current .Next );
if( current .Next.Prev != current ) return false;
last = current .Next;

}
}
if(last != Tail)

return false;
return ( visited .size () == size );

}

was written in C# with many management methods implemented (Add, Remove, Find,. . . ).
Pex generated very simple LinkedList’s structures to perform automatic test generation for
each implemented method. The problem is that the generated structures does not meet the
properties about Doubly Linked Lists as it can be seen in Figure 3. Concerning Korat, this
is The tool to generate complex data structures. The freely available part of Korat show
potential in expressing rules to hedge the automatic generation of data structures.

In Table 6 we can see a brief comparison between all the experimented and mentioned
tools, a more detailed conclusion is addressed in Chapter 5.

4 Generate Tests from Code+OCL

Since the Operational Simulator code is not familiar to us, regarding its implementation,
it was decided to start solving this problem by inferring the UML+OCL from the existing
code to be able to work on a more abstract level rather than the implementation. The idea
is to extract tests from the inferred OCL, using the Partition Analysis described in [10]
and at the same time generate tests directly from the code, using symbolic execution to
complement the specification-based generation from OCL. The main goal is to extract as
many tests as possible from a model and from the implementation to provide information
to a feedback loop [35] test generation framework with two test prespectives, functional and
structural, and from there be able to get a more refined set of tests.

A combination of both, symbolic execution from Pex and complex data generation from
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Listing 9 Finitization method implementation.
public static IFinitization finLL(int nodesNum ,int minSize ,int maxSize)
{

IFinitization f = FinitizationFactory.create(LL.class);
IObjSet nodes = f.createObjSet(LinkedListElement.class ,

nodesNum , true);
f.set("Head", nodes);
f.set("Tail", nodes);
f.set("size", f.createIntSet(minSize , maxSize));
f.set("LinkedListElement.Next", nodes);
f.set("LinkedListElement.Prev", nodes);
return f;

}

(a) Instance with 2 elements for
LinkedList

(b) Instance with 5 elements for
LinkedList

Figure 2 Examples of generated instances from Korat for LinkedList class.

Korat, it will be designed and implemented to generate more interesting inputs for the
methods under testing.

5 Conclusion

Looking for an efficient solution to automatically generate complete test sets for complex and
critical C++ software, the state-of-the-art approaches in the area were studied and along
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Table 6 Comparison of experimented and mentioned tools.

Name Target
Language

Black/White-
box

Additional
Input Output Comments

PathCrawler C
White-box
(symbolic
execution)

Test vectors

Constraints
about the
executed
paths

Too Com-
plex

Pex C#
White-box
(symbolic
execution)

– Unit Tests

Poor gen-
erated data
instances
(objects)

Korat JAVA Black-box
Invariants
written in
JAVA

Graphical
form of data
structures
(using Alloy-
GraphViz)

Powerful
generating
valid data
instances

(a) Example of Pex gener-
ated LinkedList instance to test
Remove method

(b) Example of Pex generated
LinkedList instance to test F ind
method

Figure 3 Examples of generated instances from Pex for LinkedList class.

the document some tools were introduced from methodological and experimental perspect-
ives. Pex has proved to be a very powerful tool, aimed at offering a full coverage. However,
the incapability for generating calling-methods sequences was a bit disappointing. With
Microsoft’s SpecExplorer we can already manually call sequences of methods; maybe a com-
bination of this feature with Pex would make Pex a perfect all-in-one testing tool regarding
.NET automatic testing tools. Concerning Korat, the expected improvement is just to write
the invariants for a class instead of the repOK method, or maybe infer these invariants from
the existing code. Writing the repOK method for very complex data structures requires
some previous experience with Korat, but we think this is not a weakness, since the tester
quickly gets used to write the repOK method in Korat. The only problem is that right now
we can not fully automate the process without human help.

Considering the studied tools and thinking about a full automated test generation tool,
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a clever composition among between Pex to ensure the maximum possible coverage, Korat
to generate all the valid data structures and an automatic tool to generate calls to methods
combinations would be the perfect tool.

At the end, it was proposed an approach based on the inference of tests from a Code+OCL.
Concerning the OCL inference from C++ code, work will now be done on a tool that im-
plements it. For that purpose, Frama-C will be explored, as it is well known that this tool
is able to infer pre- and post-conditions [23] and interesting safety conditions from C source
code.
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